Course Numb	er and Name									
BME303 – MECHANICS OF SOLIDS										
Credits and Contact Hours										
4&60										
Course Coord										
Mr.R.Sharavanan										
Text Books an	nd References									
TEXT BOOKS:										
1. Prabhu T.J. – Mechanics of Solids, 2009										
REFERENCES:										
1. Gere Timoshenko – Mechanics of materials – CBS, 1997.										
2. Beer & Johnson – Mechanics of materials , SI Metric Edition – McGraw Hill, ISE, 2006.										
3. Timoshenko & young, Engineering Mechanics – McGraw Hill, 2007.										
4. Popov E.P. Engineering Mechanics of solids – PHI, New Delhi, 2006.										
5. Shames Irvin. H – Introduction to Solid Mechanics – PHI,2002										
6. www.freeengineeringbooks.com/Civil/Mechanics-of-Solids-Books.php										
Course Description										
To gain knowledge of simple stresses, strains and deformation in components due to external loads.										
	ses and deformations through mathen	natical models of beams twisting bars or combinations								
of both.										
Engineering N	Prerequisites Aechanics	Co-requisites Nil								
		red elective (as per Table 5-1)								
Required										
Course Outcomes (COs)										
CO1	Upon completion of this course, the students can able to apply mathematical knowledge to calculate shear force & Bending moment diagram									
CO2	Understand stress and strain behavior of solids									
CO3	Understand and analyze stress behavior.									
CO4	analyze the deflection in beams									
CO5	Understand thick and thin cylinder									
CO6	Upon completion of this course, the students can able to apply mathematical knowledge to calculate the deformation behavior of simple structures.									

S	Student Outcomes (SOs) from Criterion 3 covered by this Course													
	COs/SOs	а	b	с	d	e	f	g	h	i	j	k	1	
	CO1	Н	Н	L					М	М		H	Н	
	CO2	Н	Н	L					М	М		Н	Н	
	CO3	Н	Н	L					М	М		Н	Н	
	CO4	Н	Н	L					М	М		Н	Н	
	CO5	Н	Н	L					М	М		Н	Н	
	CO6	Н	Н	L					Μ	М		Н	Н	
List of Topics Covered														

List of Topics Covered

UNIT I TRUSSES, SHEAR FORCE AND BENDING MOMENT DIAGRAM

Analysis of trusses – Method of joints – Method of section – Shear force and Bending moment diagram – cantilever – simply supported – overhanging beams, Relation between load, shear force and bending moments.

UNITII STRESS AND STRAIN BEHAVIOUR OF SOLIDS

Tension, Compression and shear, Normal stress and strain, Statically indeterminate problems – temperature effects – stress and strain diagram – Elasticity – Plasticity, strain energy in tension – Impact loads – Shear stress and strain – Allowable stress – Poisson's ratio – Relation between elastic constants.

PRINCIPAL STRESSES Principal stresses and maximum shear stress – importance of zero principal stress in a three dimensional state of stress – Solution to problems by analytical method, Calculation of principal stress and maximum shear stress for a pressure vessel and shaft.

UNIT III BENDING & TORSION

Normal and shear stresses in beams – Torsion of circular shafts – Statically indeterminate torsional members – Torque diagrams, Strain energy in torsion.

UNIT IV DEFLECTION OF BEAMS

Slope and deflection of beams – Double integration method – Macaulay's method – Strain energy method for cantilever, simply supported and overhanging beams.

UNIT V THIN AND THICK CYLINDERS

Thin cylinder and shells – Volumetric strain – rotational stress in thin cylinders and discs, Thick cylinders – Shrink fit – Compounding of cylinders.

COLUMN AND STRUTS Columns and struts – Eccentric loading of short struts – Euler's Formula – Limitations of Euler's formula – Rankine – Gordon formula – Johnson's Parabolic formula.

12

12

12

12

12